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Stress disturbances arising from cut fibre 
and matrix in unidirectional metal matrix 
composites calculated by means of a .modified 
shear lag analysis 

S. OCHIAI,  M. HOJO 
Mesoscopic Materials Research Center, Faculty of Engineering, Kyoto University, 
Sakyo-ku, Kyoto 606, Japan 

A useful method to calculate stress disturbances arising from cut fibres is the so-called shear 
lag analysis, in which it is assumed that fibres act to carry tensile stress without transferring 
applied stress to the matrix, and the matrix acts to transfer stress to the fibres without 
carrying tensile stress. This assumption gives a limit for application. In the present work, 
with unidirectional metal matrix composites in mind, the usual two-dimensional shear lag 
analysis was modified to express the situation where both fibres and matrix act to carry 
applied stress and also to transfer stress. By using this modified method, tensile strain 
concentration in the fibres and matrix adjacent to cut fibres and matrix, and shear stresses at 
the interface between fibres and matrix, were calculated for some examples. 

1. Introduction 
The stress disturbances arising from cut fibres in fibre 
composites has been calculated by the so-called shear 
lag analysis method, first put forward by Hedgepeth 
[1]. This method has been proved to give a good 
description of the stress concentration ahead of the 
broken fibres when the stiffness of the matrix is low 
[2] or when the yield stress of the matrix is low [3]. 
For  such cases, this analysis method has been widely 
employed [4-10]. 

The shear lag analysis method uses the approxima- 
tion that fibres act only to carry applied stress without 
transferring stress to the matrix, and the matrix acts 
only to transfer stress to the fibres without supporting 
tensile stress. This approximation, however, limits its 
application. Only when Young's modulus [2] or yield 
stress [3] of the matrix is low, can this method be 
applied successfully. Furthermore, the usual shear lag 
analysis cannot predict the influence of premature 
breakage of the matrix, because the tensile stress of the 
matrix is neglected. On these points, a new approach 
is needed. 

Recently, Ochiai et aI. [11] presented a new ap- 
proach applicable to an elastic fibre--elastic matrix 
composite system, in which both fibres and matrix are 
treated to act as carriers of tensile stress and also to act 
as stress-transfer media. The aim of the present work 
was to develop a calculation method for the stress 
disturbances in the vicinity of cut fibres and matrix for 
a two-dimensional elastic fibre plastically deformable 
metal matrix composite system, and to show how the 
strain concentration factor is affected by yield stress of 
the matrix and also by the breakage of the matrix. 

2. Calculation method 
2.1. Model composite 
A small portion of a two-dimensional composite, in 
which the cut element(s) (fibre and matrix) and 
its/their vicinity is/are contained, was taken as sche- 
matically shown in Fig. 1. In the present work, three 
cases shown in Fig. 1 were taken as examples for 
calculation; (a) one fibre and the surrounding matrices 
were cut, (b) one fibre was cut but the surrounding 
matrices were not and (c) one matrix was cut but the 
surrounding fibres were not. The centre element was 
numbered 1 and the neighbouring elements 2, 3 to N, 
outwards. When the number of cut elements was 
small, the stress disturbances due to cut elements 
diminish in the elements apart from the cut elements. 
In this model, the stress in the N + 1 elements is 
approximated to be unaffected by the existence of 
cut elements. Under this approximation, the strain of 
the N + 1 element is equal to the applied strain on 
composites, e. 

The displacements at the centre line of 1 to N + 1 
elements were denoted as UI to UN+I, respectively, 
the displacements of the interface between i and i + 1 
elements as Ui/i+l, the shear stress at the interface 
between i and i + 1 as zi/i+l, as shown in Fig. 2. The 
distance, x, was taken from the cut-ends of elements in 
the longitudinal direction, as shown in Fig. 1. Under 
this notation, UN+I was expressed as ex. Ui, Uui+~ 
and zi/i+l (i = l -N)  vary with x. The width, Young's 
modulus and shear modulus o f  fibres were denoted 
de, gf and Gf, respectively, those of matrix as din, E.~ 
and Gin, respectively, and the thickness of the present 
composite as h. 

0022-2461 �9 1996 Chapman & Hall 3861 



o1'__!_ 
I ' "  

X 

0 - - -  - I - -  
.I 

X 

I �9 

�9 - - - - I  :: . . . .  - I - - -  2-1 . . . .  

".l ".I 
_-  ".l '3 

I .  ' '  . ' l  
I " '  

L.! 
,1 

�9 ] ,J 

- -  "-I . . . . .  "--'1 .... r 
I , i  
I " .1 
I " , 1  
I " [ ' t . I  
i 
i [ ,1 

I . ,  I ' '  
i 
, 71 6 151 4 
i . . . . . . . .  -'l . . . .  I-:1 . . . .  

i:l r :  .... 
. I , 

7 

Fibre Matr ix  

Figure 1 Schematic representation of cases (a)-(c). 
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Figure 2 Notation of U~, Uu~+I and vm+x- The subscripts i and 
i/i + 1 refer to the ith element and ill + 1 interface, respectively. 

2.2. Simpl i f icat ion of the stress-strain 
curve of the matrix 

The  tensile s tress-strain,  Crm-e , curve of the mat r ix  was 
expressed as follows based on the app rox ima t ion  that  
the mat r ix  shows linear strain hardening  after yielding 

Crm = eEm f o r e < e y  (1) 

( Y m  = (1 - a)Oy -~- oteEm f o r  e > = e y  (2) 

where Em is the Young ' s  modulus ,  ey the yield strain, 
(3"y the yield stress given by e y e  m and cz the slope of the 
s t ress-s t ra in  curve in the stage of plastic deformat ion,  
normal ized  with respect  to E m . Similarly, the shear 
stress - shear strain, ~-7 curve was app rox ima ted  as 

T m  = Gmy f o r  "~ < " yy  (3) 

rm = (1 - f3)'cy + [3Gm7 for  7 > 7y (4) 

3 8 6 2  

where 7y is the shear yield strain, Zy the shear yield 
stress given by Gmyy and ~ the slope of the shear 
stress shear strain curve, normal ized  with respect  to 
Gin. [~ is approx imate ly  given b y  [12] 

I~ = ~ g m / ( 4 a m )  ( 5 )  

2.3. Shear  stresses acting at the interface 
W h e n  the absolute  value of interfacial shear stress at 
the i/i + 1 interface, 1%~+11, shown in Fig. 2, is lower 
than  Zy, the i/i + 1 interface is t e rmed the elastic inter- 
face�9 In  this case, %~+ ~ can be expressed as 

T,i/i+ 1 = a f ( u i +  1 - -  Ui/i+ O/(df/2) 

= G m ( O i / i +  1 - -  U i ) / ( d m / 2  ) ( 6 )  

by applying Dow ' s  app rox ima t ion  1-13] for the case 
where element i corresponds to fibres�9 F rom Equat ion 6, 
we have 

F o r  the case 

"Ci/i+l = H(Ui+I  -- Ui) (7) 

H = 2GfG~/(dfGm + Gfdm) (8) 

where i cor responds  to the matr ix,  
"q/i + a can be calculated in a similar manner ,  also being 
expressed by  Equat ions  7 and 8. 

W h e n  Izi+i+ 11 is higher than  Zy, the i/i + 1 interface 
is t e rmed the plastic interface�9 In  this case, zi/i + 1 can be 
expressed by using Equa t ion  4 as 

"ci/i+ t = Gf(Ui+i - Ui/i+ 1)/(df/2) 

= (1 - [~)Ty AI- ~6m(Ui/i+ 1 - -  U,)/(dm/2) (9) 

F r o m  Equa t ion  9, we have 

zi/e+l = J (Ui+I  - Ui) + ~y, (10) 

J ' 2f3GfGm/(f3drGm § Gfdm) ,(11) 

"~y,  = G f d m ( 1  - -  ~ ) ~ y / ( ~ d f G  m + G f d m )  ( 1 2 )  



Equations 7 and 10 for elastic and plastic interfaces, 
respectively, can be expressed in the general form 
given by 

T'i/i+l = J i / i + l ( g i + l  - -  g i )  -~ "~y'i/i+l (13) 

where the Jqi + 1 and ~y,, i/i + t are given b y / - / a n d  zero, 
respectively, for an elastic interface, and they are given 
by "] and "Cy,, respectively, for a plastic interface. 

2.4. Stress equilibrium equations 
The stiffness ratio of the matrix to fibre, ~, expressed 
by Equation 14, was introduced in this work for 
convenience 

g = Emdm/(Efdf) = Emgm/(Ef Vf) (14) 

where Vf and Vm are volume fractions of fibre and 
matrix, respectively, given by 

Vf = df/(df q- din) (15a) 

Vm = dm/(df + din) (15b) 

The stress equilibrium can be expressed as 

~igidehEf(d2UJdx 2) + h(Ti/i+l -- zi-1/i) = 0 (16) 

For  a fibre, ai and gl are unity for any value of i. For  
the matrix, ~i is given by ~ and 1 for plastic and elastic 
matrices, respectively, and bti is given by bt. 

Combining Equations 13 and 16, we have the gen- 
eral expression for stress equilibrium 

~ i ~ i d f h E f ( d 2 U i / d X 2 )  -]- ["]i/i+ 1Ui+ i 

- -  (Ji/i+ l -]- J i - 1 / i ) U i  

-[- " ] i _ l / i g i _ l  ~- Ty, i / i+l - Ty, , i_l / i]  = 0 

(17) 

In the present calculation, as the number of breakages 
of fibres and matrix is small, the fibres and matrix 
away from the broken elements were assumed to be 
unaffected, as stated above. The number of affected 
elements is denoted N. (N was taken to be 7 in the 
present calculation. If N was taken to be more, the 
calculation results were essentially the same.) As i = 1 
is taken to be the centre of the region picked up in this 
work as shown in Fig. 1, Equation 17 can be rewritten 
as 

d z U 1 / d x  2 -}- ~ l [ 2 J 1 / 2 ( U 2  - U1) q- 2"Cy,,1/2 ] = 0 

(18a) 

d 2 U i / d x 2  + ~i[']i/i+ 1 Ui+ 1 - -  (']i/i+ l -t- J i -  1/i) 

x Ui + "]i-iliUm-i 

~C ~ T,y,i/i+l - -  T,y,,i-1/i] = 0 (i = ~ N )  

d2UNIdx 2 + kNUN/N+lex -- (J~/~+l + ']N-1/~) UN 

-[- J N _ I / N U N _ I  -]- Zy,,N/N+I --Zy, N_ l/N] 

where ~i = 1/~igidfEf for i = 1-N. 

(18b) 

= 0 

(lSc) 

2.5. Stages arising during deformation 
The parameters of ~i, Ji/i + 1 and T,y,i/i+ 1 vary depend- 
ing on the situation of matrix and interface. If the 
matrix i behaves elastically in tension, ai is given by 1, 
and when it behaves plastically, ~i is given by ~. When 
interface i / i+  1 is elastic, Ji/i+l and "~y'i/i+l are 
given by H and 0, respectively, and when it is plastic, 
they are given by J and "cy,, respectively. In this way, 
Equations 18 can be applied to various cases by 
substituting appropriate values into cxi, gi, Ji/i+l 
and T,y,i/i+ 1" 

As the matrix is a plastically deformable metal in 
the present work, the calculation will be performed 
only for the deformation stage, where the matrix at 
infinity (x = oe) has already yielded. The calculation 
results for the deformation stage where the matrix 
deforms elastically have been reported in our former 
work [11]. 

In the three examples shown in Fig. la-c,  the situ- 
ations of matrix and interface vary as shown in Figs 3, 
and 4a and  b, and 4c and d, respectively. 

Case (a) (Fig. 3): one fibre (1) and neighbouring 
matrices (2) are cut. The matrices other than 2 are 
plastic in tension in the whole range of x, and the 
matrix 2 is elastic for 0 ~< x ~< b but plastic for b ~< x, 
where b is the dimension of the elastic matrix, which is 
infinite when the applied strain on the composite as 
a whole is equal to the yield strain of the matrix, but 
decreases with increasing applied strain, e. On the 
other hand, the dimension of the plastic interface 
2/3, a, increases with increasing applied strain. 
Therefore, b is larger than a at low applied strain, 
as schematically shown in Fig. 3a (Stage I), but the 
former becomes smaller than the latter at higher 
applied strain as shown in Fig. 3b (Stage II). All 
interfaces other than 2/3 are elastic and the interface 
2/3 is plastic for 0~<x~<a but elastic for a~<x. 
With further increasing applied strain e, the 1/2 
interface becomes plastic as shown in Fig. 3c (Stage 
III). In this stage, the interfaces 1/2 and 2/3 are plastic 
for 0 ~< x ~< c where c is the dimension of the plastic 
interface of 1/2, only 2/3 is plastic for c ~< x ~< a. In this 
way, there arise many stages, depending on applied 
strain. 

In each stage, many regions arise as schematically 
shown in Fig. 3. For  instance, in Stage I, Regions A-C 
arise as shown in Fig. 3. In Region A, all matrix 
elements (2, 4, 6, ... ) are plastic and all interfaces are 
elastic. Therefore, 0ti = ~ for matrix elements 
(2, 4, 6 . . . .  ) and 1 for fibre elements (1, 3, 5.. .  ), and 
Ji/i+l = H and "Cy,i/i+ 1 : 0 for i = 1 N .  In Region B, 
~2 becomes unity, but other parameters of ~i(i # 2), 
Ji/i+l(i = l -N)  and "Cy,i/i+l(i = l -N)  are the same as 
those in Region A. In Region C, "]2/3 becomes "], and 
"Cy,2/3 becomes "Cy, but other parameters are the same 
as those in Region B. Also for Stages II and III, the 
parameters for each region can be given in a similar 
manner. 

Case (b) (Fig. 4a and b): one fibre denoted 1 is cut. 
All matrices have yielded in tension. A t  low applied 
strain, all interfaces except 1/2 are elastic in shear. The 
interface 1/2 is plastic for 0 ~< x ~<f but elastic for 
f ~ x, as shown in Fig. 4a. f increases with increasing 
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Figure 4 Schematic representation of deformation stages and regions which appear during deformation (a, b) for case (b) and (c, d) for case (c). 

appl ied strain�9 Wi th  further  increasing applied strain, 
the interface 1/2 b e c o m e s  plastic for h ~< x ~< 9 as 
shown in Fig. 4b. 

Case (c) (Fig. 4c and  d): one matr ix  denoted  1 is cut. 
All matr ices  o ther  than  1 are plastic in tension and  the 
mat r ix  1 is elastic for 0 ~< x ~< i but  plastic for i ~< x. 
All interfaces other  than  1/2 are elastic and  the inter- 
face 1/2 is plastic for 0 ~< x ~<j but  elastic f o r !  ~< x. In 

this case, as well as in case (a), i i s  larger than  j at  low 
applied strain, as shown in Fig. 4c but  becomes small- 
er as in Fig. 4d. 

In  this work,  we denote  the regions which appea r  
dur ing deformat ion  as A,B . . . .  and  J, as shown in 
Figs 3 and 4. The  values o f ~ ,  Pc, Ji/i+i and T,y,i/i+ 1 for 
each region can be given as typically shown in 
Table  I for case (a). 

3 8 6 4  



TABLE I Values of ~i, gi, dl/i+~ and rr,i/~+x for Regions A E in case (a) shown in Fig. 3 

R e g i o n  c(i g~ Jill+ 1 Ty'i/i+ 1 

A cq = 1 f o r  i = o d d  g ~ =  1 f o r  i = o d d  d ~ / ~ + ~ = H f o r i = l - N  
cq = ~ f o r  i = e v e n  g~ = p f o r  i = e v e n  

B c ~ i =  1 f o r  i = o d d  p.i = 1 f o r  i = o d d  d q i + l = H f o r i = l - N  
c~z = 1 g~ = It f o r  i = e v e n  

cq = c~ f o r  i = e v e n  e x c e p t  2 

C ~x i = l  f o r i = o d d  g ~ = l  f o r i = o d d  J2 /a=J  
~2 = 1 g~ = p f o r  i = e v e n  d~/~+~ = H f o r  i = 1 N e x c e p t  2 

c~ i = ~ f o r  i = e v e n  e x c e p t  2 

D ~ q =  1 f o r i = o d d  g ~ = l f o r i = o d d  d2/a=Y 
cq = a f o r  i = e v e n  ~t~ = ~t f o r  i = e v e n  d~/~+ ~ = H f o r  i = 1 - N  e x c e p t  2 

E ~ =  1 f o r  i = o d d  g i =  1 f o r  i = o d d  d q i + ~ = d f o r i = l a n d 2  
c~ 2 = I g~ = p f o r  i = e v e n  Yqi+ ~ = H f o r  i = 3 - N  

c~ = c~ f o r  i = e v e n  e x c e p t  2 

"~y'i/i+ 1 = 0 for  i = 1 - N  

"fy'i/i+l = 0 for i = 1-N 

"Cy,2j 3 ~ "~y, 
"Cy,g/i+ 1 = 0 for i = 1-N except 2 

~y'2/3 ~ "Cy, 
Zy,~,+l = 0 for i = 1 N except 2 

zy,i/i+l = Zy, for i = 1 and 2 
�9 y,i/i+l = 0 for i = 3-N 

2.6. General solutions 
General  solutions for Equat ions  18 for Regions A - K  
are expressed as follows 

N 

U}  R) ~--- e x  -]- 2 { T " Y ' , k / k §  
k = l  

25/ 

+ ~, A]t)B!R,]exp(c}R)x) (19) 
j= l  

where the superscripts (R) refer to Regions A - K .  A}R)s 
are unknown  constants  which should be solved from 
bounda ry  conditions, c} R) for j = 1 -2N are constants,  
a m o n g  which the relation of o(R) ~(R) is held ~ j + N  = - -  c j  
for j = 1-N. {c}R)}2S are eigen values of  the matrix 
T(~ ) given by 

T ~  / = 

"2~t j l /z  -- 2~1J1/2 

- -  ~ 2 J 1 / 2  ~ 2 ( J 1 / 2  q-  J 2 / 3 )  - ~ 2 J 2 / 3  

- ~J~-~/~ ~(J~-~/~ + J~/~+t) - ~ d ~ , + ~  

- ~ N J u - l m  ~N(JN 1/5/ + JN/N+O 

(20 

and B(R)'s ,,j are constants  given by 

B(R) = 1 (j  = 1-2N) (21a) 1 , j  

B(RL B(1R} {1 (c}R))Z/(2J1/2~l)} (j  = 1-2N) 2 , J  z 

(21b) 

B ( R )  B!R)a,j{ _ (r 1 i , j  ---- 

q-  ( J i - 2 / i - i  -}- J i - 1 / i ) / J i  1 / i } / J i - 1 / i  

- BIR)2, j ( J i -  z , -  1/Ji-  1/0 

(j  = 1-2N, i = 3 - N )  (21c) 

2 . 7 .  B o u n d a r y  c o n d i t i o n s  
The unknown  values A}a)s and a, b, c,f, g, h, i and j 
shown in Figs 3 and 4 can be solved numerically by 

giving the following bounda ry  conditions. 
(A) At x = 0, the strains of cut fibre and matrix are 

zero, and the displacements of  uncut  fibres and matrix 
are zero. 

(B) At x = a, b, ... ,j, the displacements and the 
strains of  all elements are continuous.  

(C) At x = a, c,f, g, h and j, the shear stresses at 2/3 
(Stages I - I I I  in Fig. 3), 1/2 (Stage I I I  in Fig. 3), 1/2 
(Fig. 4a and b), 2/3 (Fig. 4b), and 1/2 (Fig. 4c and d) 
interfaces, are equal to the shear yield stress of  the 
matrix. 

(D) At x = b in Fig. 3 and at x = i in Fig. 4c and d, 
tensile stresses of the matrix 2 and 1, respectively, are 
equal to the tensile yield stress of  the matrix. 

(E) At x = 0% the strain is equal to e in each ele- 
ment. 

The number  of unknown  values is dependent  on 
deformation stage. Taking Stage I in case (a) shown 
in Fig. 3a as an example, the unknown  values are A(1A~ 
to ~ZS/,~(A) A(B) to ~25/,A(m A(C) to A(2~, a and b. The total 
unknown values are 6N + 2. The boundary  condi- 
tions A - E  are expressed by the following equat ions 

(A)U~ c) = 0 for i = 3 - N  (22a) 

and 

dU}C)dx = 0 for i = 1 a n d 2  (22b) 

(B) u!A)(b) = U!m(b), dU~n)(b)/dx 

= dU!B)(b)/dx, UIB)(a)= U~~ (23a) 

and 

dU}B)(a)/dx = dU!C)(a)/dx for i - -  1-N(23b) 

(C) H{U(a B)(a) - U~m(a)} = - "Cy (24) 

(as shear stress acts in the - x direction, we express 
shear stress to be positive for the - x direction) 

(D) Em{dU(2A)(b)/dx} = Cyy (25) 

(g) dU!A)(oe)/dx = e for i = 1 - g  (26) 

Thus  6N + 2 equations can be obtained. F r o m  these 
equations, 6N + 2 unknown  values can be calculated 
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T A B L E I I Values of mechanical properties of fibre and matrix used in the present calculation. The width and volume fraction of fibre were 
taken to be 0.1 mm and 0.5, respectively 

Mechanical properties Fibre Matrix 

$1 $2 $3 

Young's modulus (GPa) 400 
Shear modulus (GPa) 160 
Tensile strain-hardening coefficient normalized with respect to Young's 

modulus, r 
Tensile yield stress (MPa) 
Shear yield stress (MPa) 

100 200 200 
30 60 60 

0.02 0.02 
200 400 
100 200 

0.02 
800 
400 

numerically. The strain concentration, K~(x), at x = x 
for element i is expressed as 

K~(x) = {dU~m(x)/dx}/e (27) 

It was difficult to calculate exact values of more than 
three of a, b, ... and j because they are contained in 
the exponential terms. For  this reason, calculation for 
stage I I I  for case (a) in Fig. 3 and (b) in Fig. 4 was not 
performed in the present work. 

The calculation was done by using the values listed 
in Table II. The width of fibre, df, was taken to be 
0.1 m m  and the volume fraction of fibre to be 0.5. In 
order to determine the influence of Young's modulus 
and yield stress of the matrix on the stress distur- 
bances, three types of matrix, $1-$3, were taken as 
examples. The S1-$3 matrices refer to relatively soft, 
medium and hard metals, respectively, as shown in 
Table II. 

3. Results and discussion 
3.1. Case (a) 
Typical tensile and shear-stress distributions as a 
function of x for case (a) are shown in Figs 5 and 6, 
respectively, in which the results for the $1-$3 
matrices are shown in (a)-(c), respectively. In this 
example, the applied strain was 0.5%, which corre- 
sponded to Stages II, I I  and I for S t -$3  matrices, 
respectively. Regions A, D and C in Stage I I  for $1 
matrix covered 0.78( = a) ~< x, 0.59( = b) ~< x ~< 0.78, 
and 0 ~< x ~< 0.59, respectively, and those for $2 
matrix covered 0.49( = a) ~< x, 0.46( = b) ~< x ~< 0.49 
and 0 ~< x ~< 0.46, respectively (in ram). Regions A, 
B and C in Stage I for $3 matrix corresponded to 
0:55( = b) ~< x, 0.24( = a) ~< x ~< 0.55 and 0 ~< x ~< 0.24, 
respectively (ram). Figs 5 and 6 give the following 
indications. 

(1) The strain concentration fac tor  for all elements 
is highest at x = 0 but it decreases with increasing 
x and then increases, approaching 1 (unity) at large x. 

(2) The smaller the i, that is the shorter the distance 
from the cut elements in the transverse direction, 
the higher becomes the strain concentration around 
x = 0. The decrease in strain concentration factor with 
increasing x is also large when i is small in the range of 
x ~< 0.5 ram. 

(3) The harder the matrix, the higher becomes the 
strain concentration factor at x = 0, which cannot be 
predicted by the unusual shear lag ,analysis. 
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(4) The shear stress at the 2/3 interface is highest at 
x = 0 and it decreases gradually for x ~< a (corres- 
ponding to the plastic interface region) and then rap- 
idly for x 7> a (corresponding to the elastic interface 
region). 

(5) The shear stress at the 1/2 interface decreases 
and then  increases, but then again decreases with 
increasing x for the S 1 matrix while it only decreases 
for the $3 matrix. However, this feature is not fixed 
but is dependent on applied strain. Further calcu- 
lation revealed that the shear stress for the $3 matrix 
shows the same tendency as that for the S1 matrix 
when the applied strain becomes high. 

(6) According to the usual shear lag analysis, 
zl/2 and "c2/3 are treated as being the same. However, 
the present results indicate that the difference between 
these two shear, stresses is large when the matrix is 
hard ($3). On the other hand, when the matrix is soft 
($1), the difference becomes relatively small, according 
to which the usual shear lag analysis will yield similar 
results to the present method. 

(7) The differences between "1;3] 4 and 2;4/5 and that 
between ~c5/6 and 2;6/7 w e r e  very small, and cannot be 
distinguished on the scale in Fig. 6. 

(8) "I;3/4 to q;6/7 were zero at x = 0 but they in- 
creased, reaching a maximum and then decreased with 
increasing x. 

As it was found that the strain concentrations for 
uncut elements (3, 4, 5; ... ) are highest at x = 0, the 
variation of s train concentration at x = 0, K~(0), was 
calculated as a function of applied strain, e. A typical 
result for the S3'matrix is presented in Fig. 7, There 
are three distinct features. 

(i) In case of elastic matrix composites, the strain 
concentration factor is independent of applied strain 
[1, 2, 10, 11]. On the other hand, in the plastically 
deformable metal matrix composites, it varies with 
increasing applied strain. 

(ii) The strain concentration in the elements near 
the cut elements, such as K3(0) and K4(0), decrease 
with increasing e. Therefore, the probabili ty of break- 
age of fibres (3) in metal matrix composites becomes 
low in comparison with that in elastic matrix com- 
posites. This is one of the advantages of metal matrix 
composites. 

(iii) The changes in Ki(0) for the elements apart  
from-cut elements such as K6(0) and Kv(0) with in- 
creasing applied strain are small in comparison with 
those of K3(0) and K4(0). As a result, the difference 
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in Ki(0) a m o n g  the elements becomes small at high 
applied strain. 

Fig. 8 shows a compar i son  of  the results of  the 
present shear lag analysis with those of the usual 
one. The difference is relatively small for the soft $1 
matrix as shown in Fig. 8, but  it becomes large for 
harder  $2 and $3 matrices Fig. 8(b,c). This result 
indicates that  the usual shear lag analysis is useful to 
calculate strain concentra t ion factors for soft metal 
matrix composites,  but  not  for hard  and stiff matrix 
composites.  

3 .2 .  C a s e  (b)  
The difference in the strain concentra t ion factor be- 
tween cases (a) and (b)was  relatively small when the 
matrix was soft. However ,  the difference became large 
when the matrix was  hard  and stiff. Figs 9 and 10 
show a compar ison  of  Ki (x) and zu~ + 1 between cases 
(a) and (b), respectively, for t h e S 3  matrix. Figs 9 and 
10 give the following indications. 

(1) The strain concentra t ion factors Ki(x) for all 
elements a round  x = 0 in case (a) are higher than 
those in case (b). This means that  the existence of  
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uncut  matrices surrounding the cut fibre acts to re- 
duce the strain concentra t ion factor. 

(2) In  case (b), the shear stress 1.i/i+ ~ a round  x = 0 is 
highest at the 1/2 interface, while in case (a), the shear 
stress was highest at the 2/3 interface. 

(3) The variat ion of  1.2/3 is quite different between 
cases (a) and (b). In case (b), 1.2/3 is zero at x = 0 and 
then increases very rapidly, reaching a maximum,  
and decreases with increasing x, while in case (a), it is 
highest at x = 0 and decreases with increasing x. 

(4) The differences between 'F3/4 ,and %/5 and be- 
tween %/6 and 1 " 6 / 7  a r e  very small over the whole range 
of  x for both  cases (a) and (b). The difference between 
1.1/2 and 1.2/3 is large at small x but it becomes very 
small at large x for both  cases (a) and (b). 

Fig. 11 shows the variat ion of  Ki(0) as a function of  
e for the $3 matrix in case (b). It is impor tan t  that  the 
strain concentra t ion on matrix 2 is very high in corn- 

3 8 6 8  

1.6 

1.4 

1.2 

1.0 

�9 " 1 2 3 4 5  7 . . . .  7 6 5 4 3 2 1 2 3 4 5 6 7 . .  x 

........... io iiililHiilii!io 

0 . 8  ~ ~  J 

0 0.5 1.0 1.5 0 0.5 1.0 1.5 2,0 

(a) x (mm) (b) x (mm) 

Figure 9 Comparison of variations of Ki(x) (i = 3-7) for $3 matrix 
at e = 0.5% between cases (a) and (b). 
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Figure 10 Comparison of variations of z~/i+l(x) (i = 1-6) for $3 
matrix at e = 0.5% between cases (a) and (b). 

parison with that  o n o t h e r  elements. T h i s  indicates 
that  the matrix 2 could be broken if the failure strain 
of  matrix is low. Once the matrix 2 is broken,  the stress 
concentra t ion on fibre 3 becomes high, as shown in 
the results for case (a). 

Fig. 12 shows a compar i son  of K3(0) for the $3 
matrix in case (b) with that  for case (a), together with 
the results based on the usual shear lag analysis. The 
existence of uncut  matrix 2 in case (b) reduces the 
strain concentra t ion factor on fibre 3. The strain con- 
centrat ion factor  is lower than that  calculated by the 
usual shear lag analysis and is very much  lower than 
that  for case (a). As the matrix is hard  in this example 
($3 matrix), K3 (0) is strongly dependent  on it, whether 
or  not  the matrix 2 is cut. In order to achieve high- 
strength composites,  the matrix should have a high 
failure strain. This indication cannot  be obtained by 
the usual shear lag analysis. 

3 . 3 .  C a s e  (c) 
Fig. 13 shows the influence of the cut  matrix on the 
strain ,concentration factor of  the neighbouring fibres 
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2. The strain concentration factor decreases with in- 
creasing applied strain. It should be noted that the 
harder the matrix, the higher becomes the strain con- 
centration factor. This result also indicates that, if the 
hard matrix is broken prior to the fibre, the strain 
concentration is high. In case (b), where the matrix is 
not cut, the matrix acts to reduce the strain concentra- 
tion factor on the neighbouring fibres. On the other 
hand, in cases (a) and (c), where the matrix is cut, the 
cut matrix acts to raise the strain concentration factor 
on the neighbouring fibres. Thus the failure strain of 
the matrix is one of the strength-determining factors in 
addition to the failure strain of fibres. 
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Figure 13 Influence of cut matrix on the strain concentration factor 
of neighbouring fibres, K2(0). 

4. Conclusion 
In order to calculate the stress disturbances arising 
from cut fibres and matrix in unidirectional metal 
matrix composites, a new calculation method, based 
o n  the shear lag analysis, has been presented. By using 
the present method, the strain concentration factor in 
elements ahead of cut elements, and the shear stress at 
the interface, were clarified in a quantitative manner. 
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